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Abstract – The computation of the Unstable Equilibrium Point (UEP) is a key step involved in the direct methods of power 

system transient stability analysis. This paper presents an idea for formulating generalized energy function for the stability 

detection of interconnected power systems and obtained the UEP in an easy way. The energy function is formulated based on 

Energy functions for individual machines. The technique is validated by computing the Stable Equilibrium Point (SEP), the 

controlling UEP, and The Critical Clearing Time (CCT). Then, a Conventional Time Domain Method (CTDM) is used to 

validate the novel technique's results. 
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I. INTRODUCTION  
 

In the past, transient stability has been evaluated using 

Transient Energy Function (TEF) [1-3], to calculate 

Critical Clearing Time (CCT). Transient Energy Function 

is known to be a very powerful tool of assessing CCT of a 

power system without solving the system dynamics 

equations at post fault. Alternatively, direct methods 

determine system stability based on energy functions. 

These methods adjudicate whether the system will remain 

stable or not once the fault is cleared, by comparing the 

system transient energy, at the end of a disturbance, to a 

critical energy value [4-7]. Assuming that the post fault 

system has a stable equilibrium, there is region of initial 

conditions in the state system space, from which the 

faulted system trajectories converge to a stable 

equilibrium. This is the stability region of the stable 

equilibrium point (SEP) [5]. When the power system is 

stressed, due to increase in volume and/or number of 

transactions or the occurrence of a major disturbance or 

both [8], [9], the system can lose stability. The 

computation of UEP is very important for stability region 

estimation. Among the transient energy function (TEF) 

methods, both the closest UEP method [11] and the 

controlling UEP method [10] need to compute the desired 

UEP. The closest UEP is the UEP having the lowest 

energy function value among all the UEPs on the stability 

boundary of the SEP. It is thus necessary to understand the 

characteristics of the equilibrium points and how these can 

affect the particular stability of the system. Several 

methods have been proposed to compute the closet UEP 

[11], [12]. 

This paper presents an efficient transient stability 

assessment using individual machines energy functions 

approach. A novel technique for computation of 

controlling unstable equilibrium points is proposed. The 

importance of the computation of the controlling UEP is 

further emphasized with a new methodology for 

improvement of stability margins based on the analysis of 

the controlling UEP. Thus, conditions for the separation of 

a machine (or a group of machines) are determined. 

Several test systems is employed to be simulated to prove 

the validity and effectiveness of the novel approach. 
 

II. THE POWER SYSTEM MODEL 
 

The power system is represented by the so-called 

classical model where generators are represented by 

constant voltage behind transient reactance and loads are 

modeled by constant impedance [13]. Furthermore, the 

motion of the generators is expressed with respect to the 

center of inertia (C.O.I.) of the system. 

For an n-generator system, let for generator i, 

Ei, δi Magnitude and angle of voltage behind 

transient reactance, respectively. 

ωi Rotor speed relative to asynchronous frame. 

Mi Generator inertia constant. 

The position δo and speed ωo of the C.O.I. are defined 

by: 
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The generator’s motion in the C.O.I. frame is defined as: 
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Assume that the effect of damping is neglected in the 

system; the generator’s equations of motion are given by 

the following differential equations: 
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The expressions for Pi, Pei and PCOI are given by: 
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Where:  

,ij i j ij ij i j ijC E E B D E E G   

Pmi Mechanical power input. 

Gii Real part of the ith diagonal element of 

the network’s Y-matrix. 

Cij, Bij Real and imaginary components of the 

ijth element of the network’s Y-matrix, 

respectively. 

 

III. THE TRANSIENT ENERGY FUNCTION FOR 

INDIVIDUAL MACHINE 
 

Rearrange (3) for each machine at the post-fault 

condition and multiplying it by θi˙, the following equation 

can be obtained [14]: 
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Integrate (5) with respect to time, using to as lower limit, 

where 0)( 
oi t and 0)(   s
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the Stable Equilibrium Point (SEP), yields 
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Eqn. (6) is evaluated using the post fault network 

configuration. The first term in Eqn. (6) represents the KE 

of machine i with respect to the system COI. The 

remaining terms are considered to be the PE. Thus, Eqn. 

(6) can be expressed as:  

i KEi PEiV V V   
(7) 

Eqn. (7) consists of two parts: kinetic energy and 

potential energy. Both energies need to be solved 

numerically. After rotor angles are found numerically, the 

energies can be represented by: 
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(10) 

The critical energy of machine i Vcritical_i is evaluated 

where θi= θiu, wi=0 as indicated in eqn. (11). 
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Where: θu is the Unstable Equilibrium Point (UEP).  

By the first integration of real power mismatch in eqn. 

(3). The overall system energy function Vsystem [4] can be 

written as: 
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Thus, the sum of the individual machine energies is 

equal to the total system energy and the critical energy for 

overall system Vsys-critical is given by:  
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IV. PROPOSED ALGORITHM 

 
Correct determination of the SEP and UEP are essential 

for the successful use of the transient energy function, 

based on eqn. (3), the stable equilibrium point of the post 

fault system is found by solving the following nonlinear 

algebraic equations by the steepest descent method [15]. 
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The solution of such equations depends on the initial 

values of δi, i = 1, 2, …, n, which can be chosen to be the 

steady-state values of the prefault system. 

If the fault is kept long enough for one or more machines 

to become critically unstable, the potential energy of the 

critical machine goes through a maximum before 

instability occurs. Furthermore, this maximum value (of 

the potential energy along the post disturbance trajectory) 

of a given machine has been found to be a safe estimate of 

the individual machine critical energy.  

It was also shown in eqns. (8, 9, and 10) that a 

reasonable choice for the critical value of Vi is VPei-max 

along the system trajectory, and the value can be obtained 

from the sustained fault conditions. By simulating a 

sustained fault (or a fault of long duration), the potential 

energy term of eqn. (9) are computed VPei, i = 1, 2, …, n 

for each instant of time. The values of VPe-max are noted for 

the different machines (or groups of machines). These 

represent the value of Vcritical 

_ max_Critical i PE iV V  (18) 

The value of VPe-max obtained represents the energy 

absorbing capacity for each machine. It gives a measure of 

the amount of kinetic energy converted to potential energy.  

The unstable equilibrium point is found in the same way 

as the stable equilibrium point by solving the following 

nonlinear algebraic equations of (11, 18) by the steepest 

descent method [15]. 
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 But the initial guess of δi, i = 1, 2, …, n, for the 

minimization is chosen in such a way that the critical 

machine can be chosen to be π-θ
s
 and the remaining 

machines can be chosen to be θi
s
. 

To determine whether instability occurs, the total 

transient energy at the instant of fault clearing is compared 

with the value of VCritical for each machine. The mode of 

instability is then given by those machines whose transient 

energy at clearing exceeds their critical energy. 

A Single Machine Infinite Bus (SMIB), this can be 

derived as a special case of a multi-machine system as 

follows. An infinite bus is equivalent to a machine having 

infinite inertia and constant terminal voltage. If M2 → ∞, 

the eqns. (7), (8), (9) and (11) respectively become:  
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V. SIMULATIONS AND RESULTS 
 

Simulations have been conducted on both, single 

machine infinite bus system and multi-machine system. In 

this paper, the two machine infinite bus system shown in in 

Fig.5 is used as the multi-machine system. The 

conventional time domain solution and Transient Energy 

Function (TEF) have been applied for transient stability 

assessment. A three phase fault occurs on one of the 

double lines in SMIB system and at bus 4 for multi-

machine system with line 4-5 cleared. 
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V. I.  Single Machine Infinite Bus System 

Consider single machine infinite bus system as shown in 

Fig.1. A three-phase fault occurs on one of the double 

lines. SMIB system parameters used for simulation are 

shown in Table 1. 

 
Fig.1. Single machine connected to infinite bus through 

two parallel lines. 

Table 1: System parameters for SMIB 

H Pm Vt V∞ Xd
’ 

Xtrans. Xline1 Xline2 

5 1 1 1 0.2 0.1 0.4 0.4 

 

The prefault SEP, (δ, ω) = (0.4964, 0) rad. The location 

of the SEP of the post fault system is (δ
s
 = 0.7298 rad). 

Using the proposed technique, as outlined in the previous 

section, the machine critical energy is Vcritical-SMIB = 0.5538 

Pu. So, the controlling UEP relative to the fault outage is 

(δ
u
 = 2.4118 rad). 

 

 
Fig.2. Time response with fault cleared at tc < tcc, tc =0.54 sec of δ, ∆ω, Pe and energy. 

 

 
Fig.3. Time response with fault cleared at tc = tcc=0.5447 sec of δ, ∆ω, Pe and energy. 
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Fig.4. Time response with fault cleared at tc > tcc, tc=0.55 sec of δ, ∆ω, Pe energy. 

 

 

Single machine swing curve and the energy under post-

fault condition are plotted at clearing times of 0.54 sec, 

0.5447 sec and 0.55 sec as shown in Figs. 2, 3 and 4.  

Fig.2 shows a stable case where the rotor angle oscillates 

and reach another stable equilibrium point towards the end 

of the transient and stability could be assured if the 

transient energy at clearing condition δcl and ωcl remains in 

the stable region or V(δcl , ωcl) < Vcr. The system is 

critically stable with fault cleared at 0.5447 sec, 

corresponding to a critical clearing angle δcr of 82.75 

degrees and critical energy Vcr for the system investigated 

is 0.5538, which is shown to be the maximum energy as 

shown in Fig.3. When the fault is cleared at 0.55 sec, 

system instability resulted and V(δcl , ωcl) > Vcr  as 

indicated in Fig.4. 

The critical clearing time (tcc) can also be obtained from 

the Pe versus time curve. That mean when Pe touch Pm in 

the first swing, then tcc is obtained. 

Fig.2 where tc<tcc, the Pe is higher than Pm in the first 

swing. Fig.3 where tc=tcc, Pe touch Pm. When tc>tcc, the 

system will be unstable as shown in Fig.4. 

 

V.II. Multi-machine System 
The test system used contains two generators of finite 

inertia and an infinite bus, as shown in Fig.5. The system 

and prefault load flow data are given in Appendix; the 

system has been simulated with a classical model for the 

generators. The disturbance initiating the transient is a 

three-phase fault occurring near bus 4 at the end of line 4–

5. The fault is cleared by opening line 4–5.  

 
Fig.5. Network configuration of the test system. 

 

The prefault SEP, (δ1, δ2, ω1, ω2) = (0.3634, 0.2826, 0, 

0) rad. The location of the SEP of the post fault system is 

(δ1
s
 = 0.381058 rad, δ2

s
 = 0.277517 rad). Using the 

proposed technique, the individual machines critical 

energies are Vcritical-m/c1 =8.6872 Pu and Vcritical-m/c2 =0.0284 

Pu. So, controlling UEPs relative to the fault outage are 

(δ1
u
 = 2.72937 rad1, δ2

u
 = 0.365294 rad). 

Each machine swing curve, the phase trajectory in ∆ω-δ 

plot and Energy functions for individual machines under 

post-fault condition are plotted at clearing times of 0.4 sec, 

0.405 sec and 0.41 sec as shown in Figs.6, 7 and 8.  Fig.6 

shows a stable case where the rotor angle oscillates, and 

reach another stable equilibrium point towards the end of 

the transient and stability could be assured if the transient 

energy V1 (δcl, ωcl) < Vcritical1. The system is critically 

stable with fault cleared at 0.405 sec, corresponding to a 

critical clearing angle δcr1 of machine 1 (critical machine) 

of 91.6588 degrees, critical energy Vcritical1 of machine 1 

and the system investigated are 8.6872, 8.7156 

respectively. When the fault is cleared at 0.41 sec, system 

instability resulted and V1 (δcl, ωcl) > Vcritical1 as indicated 

in Fig.8. 
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Fig.6. Time response with fault cleared at tc < tcc, tc =0.4 sec of δ, ∆ω, Pe, ∆ω versus δ and energy. 

 

 
Fig.7. Time response with fault cleared at tc = tcc =0.405 sec of δ, ∆ω, Pe, ∆ω versus δ and energy. 

 

 
Fig.8. Time response with fault cleared at tc > tcc, tc=0.41 sec of δ, ∆ω, Pe, ∆ω versus δ and energy. 
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The Critical Clearing Time (tcc) can also be obtained 

from the Pe versus time curve. That mean when Pe of 

critical machine touch Pm in the first swing, then tcc is 

obtained. 

Fig.6 where tc < tcc, the Pe is higher than Pm in the first 

swing. Fig.7 where tc ≈ tcc, Pe touch Pm. When tc > tcc, 

the system will be unstable as shown in Fig.8.  

 

VI. CONCLUSION  
 

In this paper complete model for transient stability 

assessment of a multi-machine power system was 

developed using MATLAB. The classical model of a 

multi-machine power system using relative machine angle 

reference formulation is employed and the individual 

machine energy function is constructed. The stable 

equilibriums are calculated from the solution of the power 

flow equations, whereas the proposed method is used to 

compute the unstable equilibrium point in easy way with 

respect to other methods. Test results conducted on the 

single and multi-machine power system. The results 

obtained by this proposed approach are in good agreement 

with those obtained by the time solution method. 

APPENDIX  
 

Line and transformer data* 

From 

Bus 

To Bus Series Z Shunt Y 

 B R X 

1 4 0.0 0.022 0.0 

2 5 0.0 0.040 0.0 

3 4 0.007 0.040 0.082 

3   5 (1) 0.008 0.047 0.098 

3   5 (2) 0.008 0.047 0.098 

4 5 0.018 0.110 0.226 

 

Generator data of test system* 

Parameter  G1 G2 

Rated MVA 400 250 

KV 20 18 

Xd` 0.067 0.10 

H 11.2 8.0 

 

Prefault load flow data* 

Bus Voltage 
Generation Load 

P Q P Q 

1 1.03∟8.88º 3.5 0.712 --- --- 

2 1.02∟6.38º 1.85 0.298 --- --- 

3 1.00∟0º --- --- --- --- 

4 1.018∟4.68º --- --- 1.00 0.44 

5 1.011∟2.27º --- --- 0.50 0.16 

 

*All values are in per unit on 100MVA base. 
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